

AOS Semiconductor Product Reliability Report

AOP605/AOP605L, rev B

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742 <u>www.aosmd.com</u>

Apr 4, 2006

This AOS product reliability report summarizes the qualification result for AOP605. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AOP605passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation
- V. Quality Assurance Information

I. Product Description:

The AOP605 uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs form a high-speed power inverter, suitable for a multitude of applications. Standard Product AOP605 is Pb-free (meets ROHS & Sony 259 specifications). AOP605L is a Green Product ordering option. AOP605 and AOP605L are electrically identical.

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Max n-channel	Max p-channel	Units		
Drain-Source Voltage		V_{DS}	30	-30	V		
Gate-Source Voltage		V_{GS}	±20 ±20		V		
Continuous	T _A =25°C	I _D	7.5	-6.6			
Drain Current	T _A =70°C		6	-5.3	_		
Pulsed Drain Current		I _{DM}	30	-30	А		
Power	T _A =25°C	В	2.5	2.5	W		
Dissipation	T _A =70°C	P _D	1.6	1.6	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	-55 to 150	°C		

Thermal Characteristics : n-channel, Schottky and p-channel							
Parameter		Symbol	Device	Тур	Max	Units	
Maximum Junction- to-Ambient	t ≤ 10s	$R_{ heta JA}$	n-ch	40	50		
Maximum Junction- to-Ambient	Steady- State		n-ch	67	80		
Maximum Junction- to-Lead	Steady- State	$R_{\theta JL}$	n-ch	33	40	°C/W	
Maximum Junction- to-Ambient	t ≤ 10s	$R_{\theta JA}$	p-ch	38	50		
Maximum Junction- to-Ambient	Steady- State		p-ch	66	80		
Maximum Junction- to-Lead	Steady- State	$R_{ heta JL}$	p-ch	30	40		

II. Die / Package Information:

AOP605 AOP605L (Green Compound)

Process Standard sub-micron Standard sub-micron

low voltage complementary process

Package Type 8 lead PDIP 8 lead PDIP

Lead Frame Copper with Solder Plate Copper with Solder Plate

Die AttachSilver epoxySilver epoxyBond wire2 mils Au wire2 mils Au wire

Mold Material Epoxy resin with silica filler Epoxy resin with silica filler

Filler % (Spherical/Flake)90/10100/0Flammability RatingUL-94 V-0UL-94 V-0Backside MetallizationTi / Ni / AgTi / Ni / AgMoisture LevelUp to Level 1 *Up to Level 1*

Note * based on info provided by assembler and mold compound supplier

III. Result of Reliability Stress for AOP605 (Standard) & AOP605L (Green)

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	Standard: 1hr PCT+3 cycle reflow@250°c Green: 168hr 85°c /85%RH +3 cycle reflow@250°c	Ohr	Standard: 11 lots Green: 4 lots	2365 pcs	0
HTGB	Temp = 150°c, Vgs=100% of Vgsmax	168 / 500 hrs 1000 hrs	6 lots (Note A*)	492 pcs 77+5 pcs / lot	0
HTRB	Temp = 150°c, Vds=80% of Vdsmax	168 / 500 hrs 1000 hrs	6 lots (Note A*)	492 pcs 77+5 pcs / lot	0
HAST	130 +/- 2°c, 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	Standard: 11 lots Green: 4 lots (Note B**)	825 pcs 50+5 pcs / lot	0
Pressure Pot	121°c, 15+/-1 PSIG, RH=100%	96 hrs	Standard: 11 lots Green: 3 lots (Note B**)	770 pcs 50+5 pcs / lot	0
Temperature Cycle	-65°c to 150 °c, air to air	250 / 500 cycles	Standard: 11 lots Green: 3 lots (Note B**)	770 pcs 50+5 pcs / lot	0
DPA	Internal Vision Cross-section X-ray	NA	5 5 5	5 5 5	0
CSAM		NA	5	5	0

Bond Integrity	Room Temp 150°c bake 150°c bake	0hr 250hr 500hr	40 40 40	40 wires 40 wires 40 wires	0
Solderability	230°c	5 sec	15	15 leads	0

Note A: The HTGB and HTRB reliability data presents total of available AOP605and AOP605L burn-in data up to the published date.

Note B: The pressure pot, temperature cycle and HAST reliability data for AOP605and AOP605L comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion): 10 MTTF = 11415 years

In general, 500 hrs of HTGB, 150 deg C accelerated stress testing is equivalent to 15 years of lifetime at 55 deg C operating conditions (by applying the Arrhenius equation with an activation energy of 0.7eV and 60% of upper confidence level on the failure rate calculation). AOS reliability group also routinely monitors the product reliability up to 1000 hr at and performs the necessary failure analysis on the units failed for reliability test(s).

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AOP605). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $\text{Chi}^2 \times 10^9 \text{/} [2 \text{ (N) (H) (Af)}]$ = $1.83 \times 10^9 / [2 (164) (168) (258) + 2 (2 \times 164) (500) (258) + 2 (164) (1000) (258)] = 10$

MTTF = 10^9 / FIT = 1.0×10^8 hrs = 11415 years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval **N** = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u = The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K

V. Quality Assurance Information
Acceptable Quality Level for outgoing inspection: 0.1% for electrical and visual.
Guaranteed Outgoing Defect Rate: < 25 ppm
Quality Sample Plan: conform to Mil-Std-105D