Product Preview Complementary ThermalTrak[™] Transistors

The ThermalTrak family of devices has been designed to eliminate thermal equilibrium lag time and bias trimming in audio amplifier applications. They can also be used in other applications as transistor die protection devices.

Features

- Thermally Matched Bias Diode
- Instant Thermal Bias Tracking
- Absolute Thermal Integrity
- High Safe Operating Area

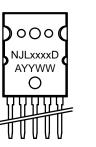
Benefits

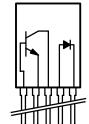
- Eliminates Thermal Equilibrium Lag Time and Bias Trimming
- Superior Sound Quality Through Improved Dynamic Temperature Response
- Significantly Improved Bias Stability
- Simplified Assembly
 - Reduced Labor Costs
 - Reduced Component Count
- High Reliability

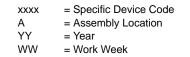
Applications


- High–End Consumer Audio Products
 - Home Amplifiers
 - Home Receivers
- Professional Audio Amplifiers
 - Theater and Stadium Sound Systems
 - Public Address Systems (PAs)

ON Semiconductor®


http://onsemi.com


BIPOLAR POWER TRANSISTORS 15 A, 230 V, 200 W



TO-264, 5 LEAD CASE 340AA STYLE 1

MARKING DIAGRAM SCHEMATIC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	230	Vdc
Collector-Base Voltage	V _{CBO}	230	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector–Emitter Voltage – 1.5 V	V _{CEX}	230	Vdc
Collector Current – Continuous – Peak (Note 1)	Ι _C	15 25	Adc
Base Current – Continuous	Ι _Β	1.5	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	200 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	– 65 to +150	°C
DC Blocking Voltage	V _R	200	V
Average Rectified Forward Current	I _{F(AV)}	1.0	А

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Case	$R_{ ext{ heta}JC}$	0.625	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle < 10%.

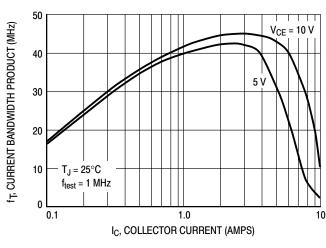
ATTRIBUTES

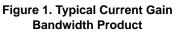
Characteristic		Value	
ESD Protection	Human Body Model Machine Model	>8000 V > 400 V	
Flammability Rating		UL 94 V–0 @ 0.125 in	

ORDERING INFORMATION

Device	Package	Shipping
NJL3281D	TO-264	25 Units / Rail
NJL1302D	TO-264	25 Units / Rail

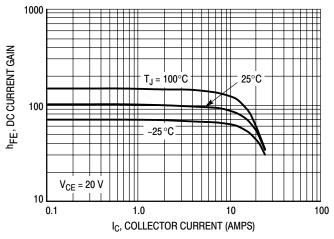
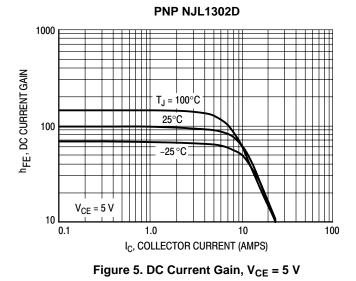
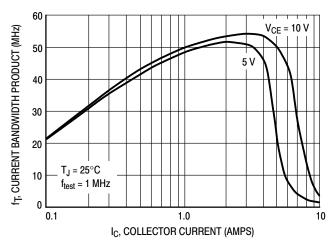
ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

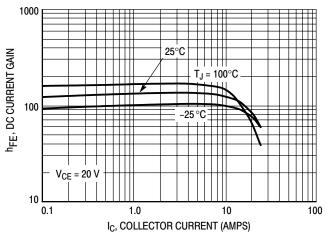

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			L	
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	230	_	Vdc
Collector Cutoff Current ($V_{CB} = 230 \text{ Vdc}, I_E = 0$)	I _{CBO}	_	50	μAdc
Emitter Cutoff Current ($V_{EB} = 5 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	5	μAdc
ON CHARACTERISTICS				
$ \begin{array}{l} \text{DC Current Gain} \\ (I_C = 100 \text{ mAdc}, V_{CE} = 5 \text{ Vdc}) \\ (I_C = 1 \text{ Adc}, V_{CE} = 5 \text{ Vdc}) \\ (I_C = 3 \text{ Adc}, V_{CE} = 5 \text{ Vdc}) \\ (I_C = 5 \text{ Adc}, V_{CE} = 5 \text{ Vdc}) \\ (I_C = 7 \text{ Adc}, V_{CE} = 5 \text{ Vdc}) \\ (I_C = 8 \text{ Adc}, V_{CE} = 5 \text{ Vdc}) \\ (I_C = 15 \text{ Adc}, V_{CE} = 5 \text{ Vdc}) \end{array} $	h _{FE}	60 60 60 60 45 12	175 175 175 175 175 175 - -	
Collector–Emitter Saturation Voltage ($I_C = 10 \text{ Adc}, I_B = 1 \text{ Adc}$)	V _{CE(sat)}	_	3	Vdc
DYNAMIC CHARACTERISTICS				•
Current–Gain – Bandwidth Product ($I_C = 1 \text{ Adc}, V_{CE} = 5 \text{ Vdc}, f_{test} = 1 \text{ MHz}$)	f _T	30	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f_{test} = 1 \text{ MHz})$	C _{ob}	_	600	pF
Maximum Instantaneous Forward Voltage (Note 2) ($i_F = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 1.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	VF	1.0 0.83		V
Maximum Instantaneous Reverse Current (Note 2) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	10 100		μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/μs)	t _{rr}	100		ns

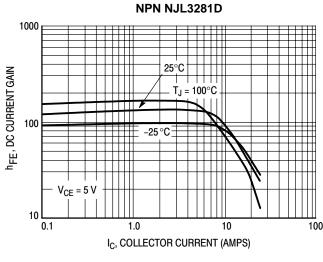
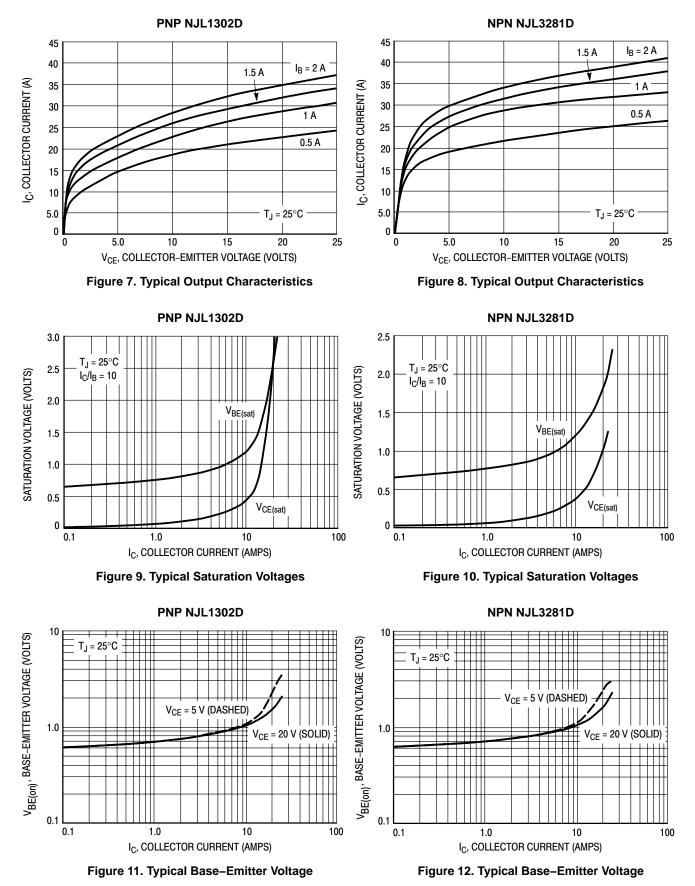

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

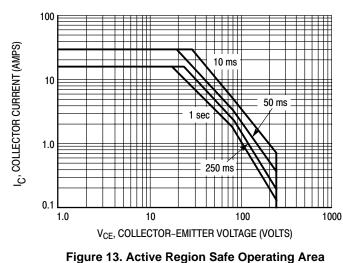
TYPICAL CHARACTERISTICS

NPN NJL3281D

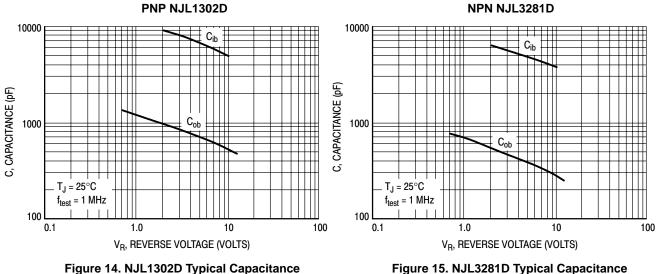

Figure 3. DC Current Gain, V_{CE} = 20 V

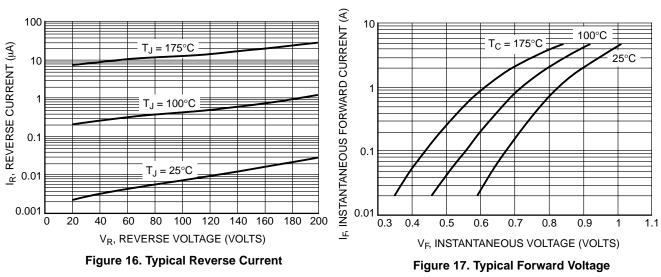

Figure 6. DC Current Gain, V_{CE} = 5 V

http://onsemi.com

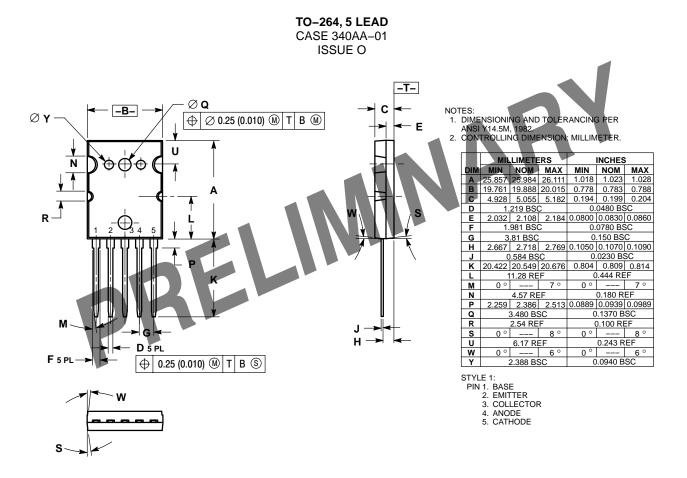
TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS



There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.


The data of Figure 13 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

PACKAGE DIMENSIONS

ThermalTrak is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

NJL3281D (NPN) NJL1302D (PNP)

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.