

LINEAR INTEGRATED CIRCUIT

40W AUDIO DRIVER

- HIGH SUPPLY VOLTAGE: ± 25V
- HIGH SUPPLY REJECTION: 80 dB
- PROGRAMMABLE SOA PROTECTION
- LOW DISTORTION (0.05% TYP.)
- LOW INPUT NOISE VOLTAGE (4 μV TYP.)

The TDA 2020D is a monolithic integrated operational amplifier in a 14 lead quad in-line plastic-package, intended for driving external power transistors in Hi-Fi amplifier (30 to 100W). This device incorporates an original (and patented) short circuit protection system, comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the external transistors within their safe operating area. A thermal shut-down system is also included. This thermal shut-down can also protect the external power transistors.

ABSOLUTE MAXIMUM RATINGS

V _s	Supply voltage	± 25	v
Vi	Input voltage	V,	
Vi	Differential input voltage	± 15	v
	Output peak current	1	Α
P _{tot}	Power dissipation at $T_{case} \leq 75^{\circ}C$	25	w
T_{stg},T_{j}	Storage and junction temperature	-40 to 150	°C

ORDERING NUMBERS:	TDA 2020D A82	dual in-line plastic package
	TDA 2020D A92 TDA 2020D AC2	dual in-line plastic package with spacer
	TDA 2020D AD2	quad in-line plastic package with spacer

MECHANICAL DATA

Dimensions in mm

CONNECTION AND SCHEMATIC DIAGRAMS

(top view)

The copper slug is electrically connected to pin 5 (substrate)

TEST CIRCUIT

THERMAL DATA

R _{th j-case}	Thermal resistance junction-case	max	3	°C/W

701

TDA 2020D

Parameter		Test conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage		± 5		± 25	V
1 _d	Quiescent drain current	$V_s = \pm 25V$		40	80	mA
I _b	Input bias current			0.15		μA
V _{os}	Input offset voltage			5		mV
l _{os}	Input offset current			0.05		μΑ
V _{os}	Output offset voltage			10	100	mV
V _{CE(sat)}	Output saturation voltage	I _o = 0.5A		± 1.7	± 2	v
В	Frequency response (-3 dB)	I _o = 0.5A	1	0 to 160 00	00	Hz
d	Distortion	$G_v = 30 \text{ dB}$ $I_o = 0.5\text{A}$ f = 1 kHz f = 40 to 15 000 Hz		0.05 0.2	0.3	% %
	Intermodulation	DIN 45500		0.2		%
R _i	Input resistance (pin 7)			5		MΩ
Gv	Voltage gain (open loop)	f = 1 kHz		100		dB
Gv	Voltage gain (closed loop)		29.5	30	30.5	dB
e _N	Input noise voltage	$P(2 dP) = 10 t_{2} 20000 Hz$		4		μV
iN	Input noise current			0.1		nA
SVR	Supply voltage rejection	f _{ripple} = 100 Hz G _v = 30 dB	35	50		dB
۱ _d	Drain current	$\begin{array}{ll} P_{o} = 4.5W & R_{L} = 36\Omega \\ P_{o} = 2W & R_{L} = 36\Omega \end{array}$		160 100		mA mA
T _{sd}	Thermal shut-down junction temperature			145		°C
T _{sd}	Thermal shut-down case temperature	P _{tot} = 5W		135		°C

Fig. 7 - Transient response

Fig. 8 - Output current vs. case temperature

703

APPLICATION INFORMATION

Fig. 9 - Application circuit for $P_o = 30$ to 50W

Note:

Resistors R9, B10, R11 and R12 are optional. Their purpose is to change the allowable operating area of the output transistors (see fig. 23).

The designer can choose different values according to working conditions (V_s , R_L) and to the SOA of the external transistors. When these resistors are not used the application circuit is modified as follows:

a) R7, R8 are changed to $25 \text{ m}\Omega$.

 b) R10, R12 are substituted by a short circuit.

Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale)

P_0 R _L = 4 Ω	30W	40W
± V _s	18V	20V
R9/R11	-	2.2 kΩ
R10/R12	4.7 Ω	4 .7Ω
Q1	BD707 or BDW21A	BD907 or BDW21A
02	BD708 or BDW22A	BD908 or BDW22A

Note:

If resistors R9, R10, R11 and R12 are not used, R7 and R8 must be 25 m Ω . The following table shows what length of wire (copper and constantan) is required to obtain a resistor of 25 m Ω for different values of α

φ (mm)	1	0.8	0.7	0.5	0.4	0.3
l (mm) copper		-	570	290	180	100
l (mm) constantan	40	25	20	10	6.5	-

SSS TDA2020D

Application suggestions

The recommended values of the components are those shown in application circuit of fig. 9, although different values can be used. The following table may help the amplifier designers.

Component	Recomm. value	Purpose	Larger than recommended value	Smaller than recommended value
C1	0.1 μF	Elimination of DC current on volume control	Reduced lower cutoff frequency	Increased lower cutoff frequency
C2	10 µF	To obtain DC gain equal to 1	Reduced lower cutoff frequency	Increased lower cutoff frequency
C3 and C4	0.1 μF	Frequency stabilization		Danger of oscillations
C5	15 pF	Upper frequency cutoff	Reduced upper cutoff frequency	Increased upper cutoff frequency
C6	0.1 µF	Frequency stabilization		Danger of oscillation
С7	270 pF	Compensation		Danger of oscillations
R1	100 kΩ	Closed loop gain determination	Larger closed loop gain	Smaller closed loop gain
R2	3.3 kΩ	Closed loop gain determination	Smaller closed loop gain	Larger closed loop gain
R3	R1	Input bias	Output DC offset variation	Output DC offset variation
R4	3.9 Ω	External power transistor driving	Danger of distortion	Increased load for the driver
R5	1 Ω	Frequency stabilization	Danger of oscillations	Danger of oscillations
R6	390 Ω	Compensation		
R7 and R8	50 mΩ	Current protection sensing	Reduced maximum output current value	Increased maximum output current value
R9, R10, R11, R12 see Fig. 23			see Fig. 23	
Q1 - Q2	BC	0 707 – BD 708 or BD 90	7 – BD 908 or BDW 21A	– BDW 22A
D1	BA 128	Short circuit prot.		

Fig. 11 - Output power vs. supply voltage

Fig. 12 - Output power vs. supply voltage

Fig. 13 - Distortion vs. output power

Fig. 14 - Distortion vs. output power

Fig. 15 - Distortion vs. frequency

Fig. 16 – Input sensitivity vs. output power

Fig. 17 – Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 18 – Power dissipation and efficiency vs. output power

Fig. 19 - 60W to 100W bridge configuration application circuit

Note: With a bridge configuration the output power is increased while the other performances are the same as that of the application in fig. 9. The table shows the output power that can be obtained using different power transistor pairs.

- $A \begin{cases} Q1 = BDW21A\\ Q2 = BDW22A; V_s = \pm 15V; R_L = 4\Omega \cdot 60W \end{cases}$
- $B \begin{cases} Q1 = BD707 \\ Q2 = BD708; V_s = \pm 20V; R_L = 8\Omega \cdot 80W \\ C \begin{cases} Q1 = BDW51A \\ Q2 = BDW52A; V_s = \pm 18V; R_L = 4\Omega \cdot 100W \end{cases}$

Fig. 20 - 80W Hi-Fi amplifier

 $^{\rm (i)}$

For this application the maximum value of V_s in no-load condition is $\pm 45V$.

707

Application suggestions for circuit in fig. 20

Using the two circuits shown in fig. 21 and fig. 22 it is possible to use a transformer with a large spread of output voltage between load and no-load condition.

The voltage on pins 1 and 5 follows V_{o} according to the equations:

$$V_{1} = V_{o} + (V_{s} - V_{o}) \cdot \frac{R2}{R1 + R2} - 2 V_{BE}$$
$$V_{5} = V_{o} - (V_{s} + V_{o}) \cdot \frac{R2}{R1 + R2} + 2 V_{BE}$$

while the voltage between pins 1 and 5 is a constant. In fact:

$$V_{1-5} = V_1 - V_5 = V_s \cdot \frac{2 R2}{R1 + R2} - 4 V_{BE}$$

 $V_{\rm 1-5}\,$ must not exceed 50V and then the maximum value of $V_{\rm s}\,$ in no-load condition will be:

$$V_{s max} = (50 + 4 V_{BE}) \cdot \frac{R1 + R2}{2 R2}$$

The minimum value of $V_{\rm s}$ depends on the output power requested and will be:

 $V_{s(min)} = V_{L} + V_{CE(sat)}$ with $V_{L} = \sqrt{2 P_{o} R_{L}}$

Resistance R2 must be greater than R1 to guarantee a positive voltage on pin 1 and a negative voltage on pin 5 for correct working of TDA 2020D.

- Note 1 Between pins 1 and 5 a ceramic capacitor must be inserted to guarantee good stability.
- Note 2 It is possible to insert an electrolytic capacitor (10 μ F) between pin 1 and GND and between pin 5 and GND, but in this case the maximum output voltage must be V_{peak}=23V.

With the circuit in fig. 22 the voltage at pins 1 and 5 is kept constant by two zener diodes. In load conditions a current equal to $I_o = I/\beta$ flows in R; the value of R is then given by $R = \frac{(V_{CE} - V_{BE})}{I}\beta$. In no-load condition, if ΔV is the in-

crease in the supply voltage, the zener diodes dissipate a power depending on ΔV and β according to the equation:

$$P_{z} = V_{z} \cdot I_{z} = V_{z} \cdot \frac{\Delta V}{R} = V_{z} \cdot \frac{\Delta V \cdot I}{\beta (V_{CE} - V_{BE})}$$

Fig. 21

SHORT CIRCUIT PROTECTION

The most important innovation in the TDA 2020D is an original circuit which limits the current of the output transistors. Fig. 23 shows that the maximum output current is a function of the collector-emitter voltage; hence the output transistors work within their safe operating area (fig. 24). This function can therefore be considered as being peak power limiting rather than simple current limiting.

By choosing the appropriate values for R9, R10, R11, R12, (fig. 9) the maximum output current can be established as a function of the SOA of the output parameters being used.

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

- 1) An overload on the output (even if it is permanent) or an above-limit ambient temperature can be easily withstood since the T_i cannot be higher than 150°C.
- 2) The heatsink can have a smaller safety factor than a conventional circuit. There is no possibility of device damage due to high junction temperature.

If, for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption.

The thermal protection unit of the TDA 2020D will also provide thermal protection of the output transistors if they are mounted on the same heatsink as the I.C.

MOUNTING INSTRUCTIONS

Fig. 25 - Mounting system of TDA 2020D

Fig. 26 - Cross-section of mounting system

Fig. 27 - Maximum allowable power dissipation vs. ambient temperature

The power dissipated in the circuit must be removed by adding an external heatsink as shown in figs. 25 and 26.

The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied with the device.

Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure which the screws exert via the spacer and the printed circuit board; this is due to the special shape of the spacer.

Note: The most negative supply voltage is connected to the copper slug, hence to the heatsink (because it is in contact with the slug).

