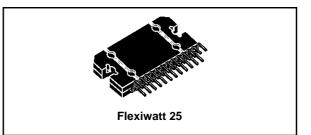


TDA7454

PRODUCT PREVIEW

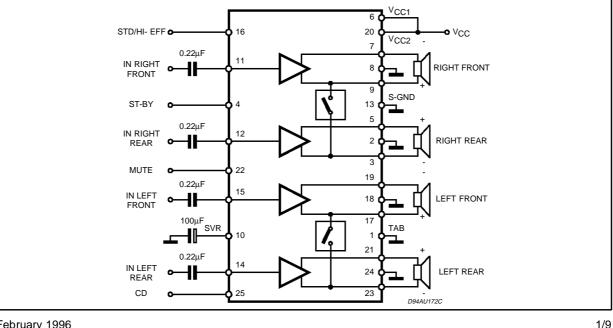
HIGH EFFICIENCY QUAD BRIDGE CAR RADIO POWER AMPLIFIER


- HIGH OUTPUT POWER CAPABILITY 4 x 22W/4Ω @14.4V, 1KHz, 10%
- DUAL MODE OPERATING EXTERNALLY PRESETTABLE: CONVENTIONAL CLASS A-B MODE, HIGH EFFICIENCY MODE
- LOW EXTERNAL COMPONENTS COUNT: - NO BOOTSTRAP CAPACITORS - NO EXTERNAL COMPENSATION INTERNALLY FIXED GAIN (26dB)
- CLIPPING DETECTOR
- ST-BY FUNCTION (CMOS COMPATIBLE)
- MUTE FUNCTION (CMOS COMPATIBLE)
- AUTOMUTE AT MINIMUM SUPPLY **VOLTAGE DETECTION**
- LOW RADIATION

Protections:

- OUPUT SHORT CIRCUIT TO GND; TO Vs; ACROSS THE LOAD
- 3 STEPS OVERRATING CHIP TEMPERA-TURE
- LOAD DUMP VOLTAGE
- FORTUITOUS OPEN GND
- LOUDSPEAKER DC CURRENT
- ESD

BLOCK & APPLICATION DIAGRAM


MULTIPOWER BCD TECHNOLOGY

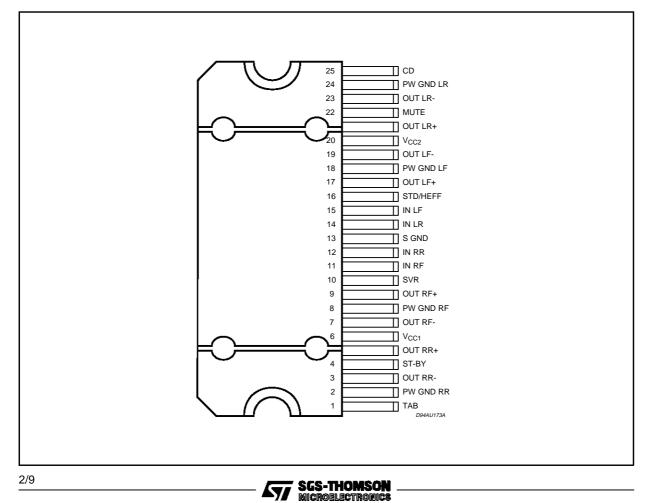
DESCRIPTION

The TDA7454 is a new BCD technology QUAD BRIDGE type of car radio amplifier in Flexiwatt25 package specially intended for car radio applications.

Among the features, its superior efficiency performance coming from the internal exclusive structure, makes it the most suitable device to simplify the thermal management in high power sets. The dissipated output power under average listening condition is in fact reduced up to 50% when compared to the level provided by conventional class AB solutions.

February 1996

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{op}	Operating Supply Voltage	18	V
Vs	DC Supply Voltage	28	V
V _{peak}	Peak Supply Voltage (for t = 50ms)	40	V
lo	Output Peak Current (not repetitive t = 100µs)	4.5	А
lo	Output Peak Current (repetitive f > 10Hz)	3.5	А
P _{tot}	Power Dissipation T _{case} = 70°C	86	W
T _{stg} , T _j	Storage and Junction Temperature	-55 to 150	°C

THERMAL DATA

Symbol	Description			Unit
R _{th j-case}	Thermal Resistance Junction-case		1	°C/W

PIN CONNECTION (Top view)

ELECTRICAL CHARACTERISTICS (Refer to the test circuit $V_S = 14.4V$; $R_L = 4\Omega$; $f = 1KHz$;
T _{amb} = 25°C, unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range		8		18	V
l _d	Total Quiescent Drain Current			140		mA
Po	Output Power	@ EIAJ		30		W
		THD = 10%		22		W
		THD = 1% : BTL MODE		18		W
THD	Total harmonic distortion	$P_O = 1W$: BTL MODE $P_O = 10W$: BTL MODE		0.03 0.03		% %
		$P_O = 1W$: Hi-EFF MODE $P_O = 10W$: Hi-EFF MODE		0.03 0.3		% %
Ст	Cross Talk	f = 1KHz f = 10KHz		55 45		dB dB
R _{IN}	Input Impedance			15		KΩ
Gv	Voltage Gain		25	26	27	dB
ΔGv	Voltage Gain Match				1	dB
E _{IN}	Output Noise Voltage	$R_g = 600\Omega$		100		mV
SVR	Supply Voltage Rejection	$ f = 300Hz; Vr = 1Vpp; \\ R_g = 0 \text{ to } 100\Omega; $		50		dB
BW	Power Bandwidth	(–3dB)	75			KHz
A _{SB}	Stand-by Attenuation			100		dB
V _{sb IN}	Stand-by in Threshold				1.5	V
V _{sb OUT}	Stand-by out Threshold		3.5			V
I _{sb}	Stand-by Current Consumption				100	μA
A _M	Mute Attenuation			90		dB
V _{M IN}	Mute in Thereshold				1.5	V
V _{M OUT}	Mute out Threshold		3.5			V
I _M	Mute pin Current (Sourced)			1		μA
	Mode Select Switch	Standard BTL Mode Op. (Vpin16)		Open		
		High Efficiency Mode (V _{pin 16})			0.5	V
CD	Clip Det. out Current (Pull up to 5V with $10K\Omega$)	CD off: P _{Omin} = 10W CD on: THD = 5%		150	5	μΑ μΑ

TDA7454

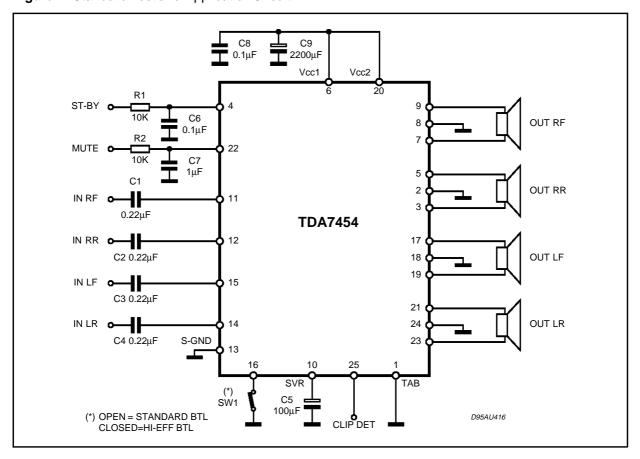
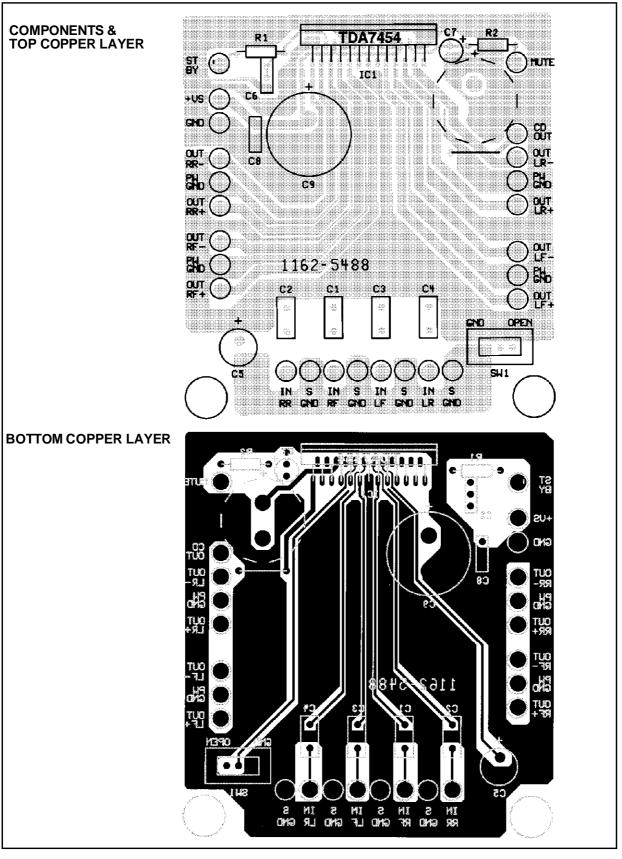
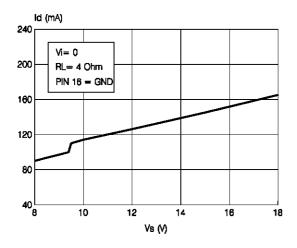


Figure 1: Standard Test and Application Circuit.




Figure 2: P.C.B. and components layout of fig. 1 circuit. (1.25:1 scale)

MODE SELECTION TABLE OPERATION OF THE DEVICE

1) STD/HI-EFF (pin 16 =	OPEN)				
STANDARD QUAD BRIDGE MODE	HIGH-EFF QUAD BRIDGE MODE	STANDARD QUAD SINGLE-ENDED MODE	ST-BY MODE	- Tchip (deg)	
1	00 1	50 1 [°]	70		
2) STD/HI-EFF (pin 16 =	GND)				
HIGH-EFF QUAL	D BRIDGE MODE	STANDARD QUAD SINGLE-ENDED MODE	ST-BY MODE	- ►Tchip (deg)	
	1	50 1 [°]	70	1 (0)	
1) STD/HI-EFF (pin 16 co	onnected as shown in the	figure below.	1	_	
STANDARD QUAD BRIDGE MODE OR HIGH-EFF MODE (Theatsink dependent)	HIGH-EFF QUAD BRIDGE MODE	STANDARD QUAD SINGLE-ENDED MODE	ST-BY MODE	Tchip (deg)	
1	00 1	50 1 [.]	70		
STD/HI-EFF (pin 16)					

Figure 3: Quiescent Current vs. Supply Voltage

Figure 4: Output Power vs. Supply Voltage

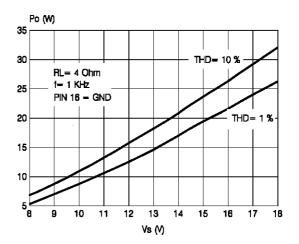


Figure 5: Distortion vs. Frequency

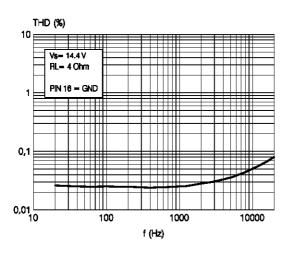


Figure 7: Supply Voltage Rejection vs. Frequency

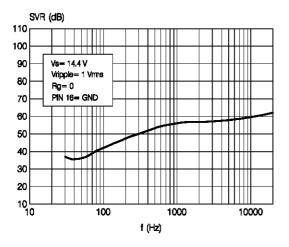
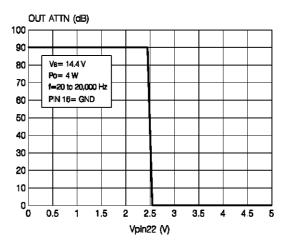
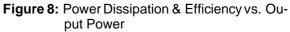
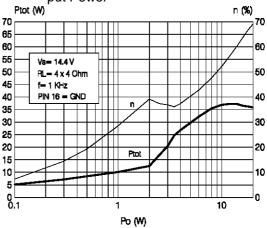
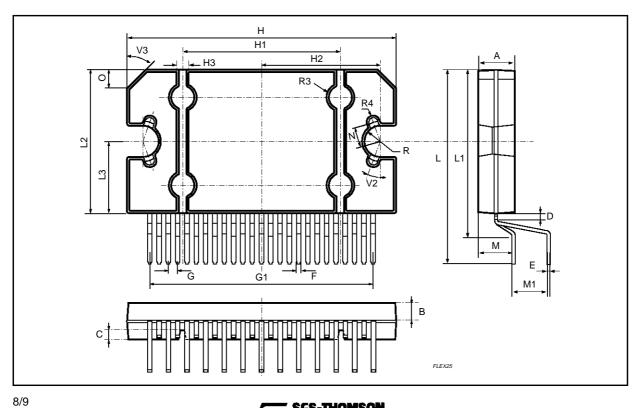





Figure 6: Muting Attenuation vs. Vpin 22



TDA7454

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.45		4.65	0.175		0.183	
В	1.80	1.90	2.00	0.070	0.074	0.079	
С		1.40			0.055		
D	0.75	0.90	1.05	0.029	0.035	0.041	
E	0.37	0.39	0.42	0.014	0.015	0.016	
F			0.57			0.022	
G	0.80	1.00	1.20	0.031	0.040	0.047	
G1	23.75	24.00	24.25	0.935	0.945	0.955	
Н	28.90	29.23	29.30	1.138	1.150	1.153	
H1		17.00			0.669		
H2		12.80			0.503		
H3		0.80			0.031		
L	21.57	21.97	22.37	0.849	0.865	0.880	
L1	18.57	18.97	19.37	0.731	0.786	0.762	
L2	15.50	15.70	15.90	0.610	0.618	0.626	
L3	7.70	7.85	7.95	0.303	0.309	0.313	
М	3.70	4.00	4.30	0.145	0.157	0.169	
M1	3.60	4.00	4.40	0.142	0.157	0.173	
Ν		2.20			0.086		
0		2			0.079		
R		1.70			0.067		
R4		0.50			0.019		
V2	20°						
V3	45°						

FLEXIWATT25 PACKAGE MECHANICAL DATA

SGS-THOMSON MICROELECTRONICS

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

